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ABSTRACT 

A systematic procedure for the calculation of mesonic masses in 

QCD with large number of colors is proposed. The masses are expanded 

in terms of an auxiliary parameter 0, which is set to 1 at the end of the 

calculation. The expansion coefficients are expressed in general in 

terms of the Feynman integrals of &CD. 

The terms of the order (Y n mvolve diagrams with n loops. Explicit 

expressions are found up to a3. These terms appear to be rather small, 

so that one may try to extrapolate to cu=l. The qualitative properties of 

the spectrum are plausible, but for quantitative predictions further 

calculations are required. 
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INTRODUCTION 

The hadronic spectrum in massless QCD is essentially universal. 

Due to renormalizability, there is only one scale 

p = A exp 
1 

- - 
ago’ 

(1) 

where A- m is the U. V. cutoff, go- 0 is the corresponding bare 

coupling constant, and a and b are the well-known coefficients of the 

p -function. 

For finite go there are also terms O(go’) in the exponential of (I), 

coming from 3 and more loop terms in p-function, but in the limit go- 0 

those terms drop out. Note, however, that lo is defined up to a common 

scale factor, since by changing go2 - go2 + zlgo4 + z2g06 + . . , (which 

corresponds to the change of renormalization procedure), we achieve 

the factor in (i), and this factor remains finite in the limit go -+ 0. 

The effective coupling at the scale p is a universal number and 

cannot be treated as a free parameter. (In folklore that p is referred 

to as a position of a logarithmic pole of the effective coupling but the 

coupling may always be redefined as to avoid the fictitious pole. ) 

As for the quark masses, for the light quarks u, d, s, the masses 

arise almost spontaneously - the bare masses are likely to be of electro- 

magnetic origin. If we disregard the charmed and + particles, and 

neglect the bare masses of u, d, s, quarks, then we are left with p 
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as the single parameter of the theory. The spectrum would then be 

Mi = p x (universal numbers) . (2) 

These universal numbers depend only on discrete parameters of the 

theory -- the number NC=3 of colors and number Nf=3 of flavors. As 

1 was first noticed by G. ‘t Hooft, the theory simplified in the multicolor 

limit 

N -+a. 
C (3) 

In this limit all dimensionless quantities can be expanded in l/NC, and 

in particular 

M. 
2 = Ai + Bi/Nc + . . . 

P 

As for the general scale (r, it will remain finite in the multicolor limit 

2 provided the product Ncgo 1s kept fixed. The coefficients N ,’ a and b 

tend to the following limits 

11 a,- 
NC 48~r’ 

b 
51 

-ET’ 

(5) 

(6) 

Estimates ,’ based on the unitarity condition, show that all the 

mesons are stable at infinite number of colors, so that the coefficients 

Ai in (4) are real. The amplitudes of decay of meson to other mesons 

are down by some powers of N . This is due to the fact that colorless 
C 

states represent a small fraction of all kinematically allowed states: 
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N,’ for the iq states, NC2 for q<qq states etc. The decays into quarks 

and gluons are favorable kinematically, but we expect that these decays 

are forbidden dynamically. 

We are not going to discuss now the arguments in favor of color 

confinement, but rather accept confinement as a working hypothesis. 

Within the framework, proposed below, this hypothesis looks quite natural 

and to a certain extent appears to be self consistent. 

II. INFRARED REGULARIZATIODT AND e-EXPANSION 

How shall we calculate the universal coefficients Ai, Bi, in the 

mesonic masses? It seems unlikely, that they can be exactly expressed 

on terms of known mathematical functions. So, special numerical methods 

are to be developed. Here we propose amethod which resembles the 

e-expansion in the theory of phase transitions. An auxiliary parameter 

(Y is introduced in such a way, that at small cy some kind of perturbation 

theory can be applied, whereas at cu=l one returns to original QCD. 

The coefficients Ai, Bi, etc. of expansion of mesons masses in l/N 
C 

will now depend on (Y and can in turn be expanded in a power series. 

There is some evidence (see below), that c-expansion is convergent, in 

contrast with 1 /NC expansion. The coefficients of the a-expansion involve 

the Feynman integrals of ordinary perturbation theory (up to n loops for 

a”). The explicit relations will be given up to cu3 but there is no real 

problem in calculation of higher coefficients. As for the scale p, it 
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remains unchanged, so that the a-expansion does not alter the famous 

nonanalytic relation (1) between the scale of masses and the coupling 

constant. 

We start from the Pade regularization of multicolor QCD T’” where 

the masses Mi depend on the infrared cutoff R - m in the following way 

(7) 

The (massesI are defined as the positions of poles of 2-point functions of 

local gauge invariant fields with corresponding quantum numbers (currents, 

etc. ). The matrix N/N Pade approximation in k2 near k2 = -A2 is applied, 

and R is defined as N/A. At R - m we should recover the original theory, 

whereas at finite R we have a discrete factorizable spectrum, free of 

ghosts and tachyons (see Refs. 3 and 4 for more details). 

An important property of Pade regularization is that it always over- 

estimates the masses. They decrease monotonously with N(i. e. , with R). 

This follows from general properties of Pade approximant of Stiljes functions 

(the functions with positive spectral measure in O< k2<a in our case. ) Our 

Z-point functions are Stiltjes functions due to the spectral conditions. 

The functions F. in (7) are known as a power series in the effective 
1 

coupling agi , which tends to se 1~) at pR < < 1 as 

agl - (-(+ b Pn(-c) )-* 

5 = 1 n(&R) e 

(8) 

(9) 
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We are interested in the opposite limit, where the effective coupling 

is not small, and we expect that Fi(x) increases linearly with x, so that the 

masses and mass spacings remain finite at infinite cutoff R. This would 

correspond to color confinement. The other alternative is that the masses 

condense to the thresholds of {q and/or gluon production, so that the 

spectrum becomes continuous. 

Without asymptotic freedom (say, in massless QED), this condensation 

would certainly occur, since then the coupling decreases at R - m, so that 

Fi tends to the zeroth order terms, which are finite. 

Also, if we take a finite number of colors in &CD, the masses would 

condense to the physical thresholds (which are at zero mass due to the 

Goldstone theorem). Thus, only in QCD with infinite number of colors 

the above definition of masses would yield a finite limit at R-m. (Never- 

theless, it is possible to generalize the method as to incorporate l/NC 

corrections. This will be considered in a subsequent paper. ) 

Let us now generalize the theory by introducing a continuous parameter 

(Y as follows 

Mi(a, R) = A2 FiolR) (10) 

If the function Fi(x) increases linearly, then at a2 < 1 the generalized 

mass would increase at PR - m . On the other hand, at PR - 0 Fi tends to 

a constant, so that the mass increases again. Thus there should be a 

minimum at some pR depending on (Y. When (Y tends to 1, this minimum 

shifts to PR = m, as one can see from Fig. 1, where P n(Mi/p) is plotted 
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versus P n FR for various cy and from Fig. 2, where 1 n FR is plotted 

versus (Y. 

At a + 0 the minimum corresponds to small )IR, where perturbation 
2 

theory can be applied. This happens since at small (1 the factor (pR)-” 

in (10) decreases very slowly with R, so that the small increase of Fi(pR) 

due to the increase of the effective coupling gR would compensate the 

above mentioned decrease. As we shall see below, the corresponding 

value of g 
2 
R 

is proportional to (Y, and hence the perturbation theory would 

yield an a-expansion. 

Let us proceed in a systematic way. It is convenient to take the log 

of (10) 

Here 

Pn 
M$Q, R) 

P 
= fi(k) - a25 . (11) 

f,(E) E lnFi(e’) . (12) 

The minimum of the r. h. s. of (11) is nothing but a Legendre transform 

of f(5): 

$i(~) = min[ fi( 5 ) - a’( ] 

53 = -za5 
da 

df. 2 
2zLy 
dS 

(13) 

(14) 

(15) 

In order to find the masses, we should calculate this Legendre transform 

at cu=i 
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Suppose, we know the expansion of masses in effective coupling gR, i.e., 

we know fi(5 ) in the form 

fi = ai + hiagE: + c i(agi)2 + di(agi)3 + . . , (17) 

The relation between gR, and k=Q npR is given by the Gell-Mann-Low 

equation 
‘ 

gR 

c= Qn: - 2 dg2/P(g2) = - + - b Q n agi - (18) 

g0 agR 

where 

P(g2) = -ag4 - ba2g6 -Ca g 3 8 + s. ~ 

is the G-L function, 

5 
!z2 

tj~ (ag’) 3 dg’ { 1 + 1 - b i . 
0 i%g2) ag4 2 

(Weused relation (1) between p and go). 

The function 4 (ag2) is analytic at g2=0 

+ (ag2) = (c - b2)agz + O(g4) 

so that one may put go = 0 in the last line of (18). 

- bQnagi - c - b’)agi + O(gi) . 

agR 

Now, the extremum condition (15) reads 

(19) 

(20) 

(21) 

(22) 
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FERMILAB-Pub-771 74-THY 

and we find by iterations 

2 
agR 

+ 
6c; - 3dibi + (b2 - c)bf 

b; 
+ O(a4) # 

(23) 

(24) 

Substitution of (24) into (22), (17) and (13) yields 

$(a) = ba2 P no + ai + 2 6 o + 1 

+ O(cz4). (25) 

There is only one singular term 

bcz2Pn CY (26) 

which arises from 1nagfl in (22). Since tnis term is absent at a=l, we 

may drop it, and we arrive at the cu-expansion. 

It is important, that the a-expansion is universal, it does not depend 

on the cnoice of renormalization procedure. If we change the renormalization 

procedure, the coupling constant will change as follows: 
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+ zl(agi)2 + z2(agi)3 + . . . (27) 

which leads to the transformation of the terms in ordinary perturbation 

theory 

a-a 

b+b 

2 

c-c+Zl+bZ -z 1 2 

a. - a. I 1 

bi - b. 1 

c. - ci + z b. 1 1 1 

ci+di+2zc.+z b. . 11 21 

One may verify that under these transformations in (25) 

pi -f hi (Cu) + Z (Y 
2 

1 
~ 

This universal change of $i can be compensated by redefinition of 

normalization point )J in (16). 

p - p exp(-‘zla’) . 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

This invariance holds in all orders in (Y and reflects the fact that the 

minimal value of the function does not depend on the choice of variable. 

Let us now discuss the general properties of oi(ru). At small (Y this 

function increases, since fii is positive. Certainly, bi itself should 
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be positive for all quantum numbers i. This condition is discussed below. 

From (14), (15) we see, that there is a maximum of C#I~(CU) at 

(37) 

provided this quantity is less than 1. 

As (Y tends to 1, E(Q) increases, so that $I ‘(0) tends to -a. The 

structure of singularities at cr=l depends on the rate of the function 

fi(Q - Cat 5-+m . It is natural to assume, that this function approaches 

its limit as some power of pR, or faster, in which case oi(~) possesses a 

universal and rather weak singularity, which cancels in the mass ratios. 

The resulting behavior of c$~(cY) is shown in Fig. 3. 

The vital question concerns the convergence of the a-expansiom. 

Does it converge around cu=O, or is it an asymptotic expansion? The 

possibility of convergence is supported by the recent study of Neveu, 

Nussinov, Koplik ,5 who proved that the number of planar diagrams 

increases with the order only by an exponential law (whereas the total 

number of diagrams increases as a factorial). 

It might appear that the contributions of individual planar diagrams of 

the high order increase by themselves as a factoral. Here the domain of 

the small momenta qi<< k in the loops looks dangerous. If the relevant 

momenta decrease with order n by a power law, then indeed the 

contribution of the diagram will increase as factorial 

( k n*nn 9 average 1 (38) 
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However, if we exclude the dangerous domain, say, by introducing a bag 

of size R then the planar diagrams would be bounded and the perturbation 

expansion is likely to be convergent. (The upper limit A is irrelevant due 

to renormalizability. ) As we have seen above, the nonanalytic dependence 

of the masses on the bare coupling constant appears automatically at R-m. 

The divergence of the perturbation series at finite R is not required for 

that. If the perturbation series is convergent, then the function fi and p 

would be analytic at gL=O, which implies analyticity of $J~(D) - ba‘Qna. 

Strictly speaking Pade regularization is not equivalent to a bag. If it 

appears that this regularization does not provide convergence of the 

perturbation series, then apparently one should consider some other method. 

Note, however, that the general framework of an a-expansion does not rely 

upon the specific form of the infrared regularization, provided it is Lorentz- 

invariant and provided the masses decrease with R. 

III. THE ZEROTH AND THE FIRST TERMS OF @-EXPANSION 

In this and in the next section we find explicit expressions for the 

coefficients of the a-expansion in terms of Feynman diagrams of &CD. 

The effects OI chiral symmetry breaking will be neglected, so that our 

expressions would make sense only for sufficiently heavy mesons. 

The zeroth and the first terms of the a-expansion are, in fact, 

already known. According to Ref. 4 
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ai = Qn zs(vi) (39) 

Z’(F) 
bi = Y.’ = 

1 Zs(Yi) 
(40) 

vi = Ai - 2 (41) 

zs(y) being the positive root of the Bessel function Jv(2z), Ai the lowest 

normal dimension of the interpolating field for the given meson i, yFg2 

its anomalous dimension in the first order in coupling constant. 

As far as the interpolating fields with higher dimensions are concerned, 

according to Ref. 4 those mix with the basic field only in the order g 8 4 
,l.e.,a 

For example, for the Regge recurrences of the vector meson, the 

basic field has the form 

vn = -& c y,&&qn-lIr (42) 

where 5 is a lightlike vector, 

V = 3 tB 
)I I-r P 

(43) 

is the covariant derivative, acting on the quark field +. A sum over 

colors at fixed number of flavors of quarks is understood. In this case 

A=nt2 (44) 

i 

n 

Y l =+ I-2 
n(n+i) + 4 

1 
j=2 3 a I) (45) 
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As is well known, the Bessel function has an infinite number of roots 

fzS(v), ordered by a magnitude. All of them increase with index v, so 

that the positivity of bi is provided by the positivity of the anomalous 

dimensions yf . For the above operators anomalous dimensions are 

positive for for n> 1. The case n=l (conserved vector current) is 

exceptional. But in this case the neglected effects of chiral symmetry 

breaking should be most important, since the masses of vector mesons 

are sufficiently low. 

The vacuum trajectory corresponds to the basic fields 

e’1F”(cV)n-2 ” 
)I 

F5 cy ” 

where 

F =aB -aB + BB 
pv P” “P c 1 P v 

in the usual field strength; 

VaF = a,F t B F 
c 1 a 2 

(46) 

(47) 

(48) 

is the corresponding covariant derivative. In this case 

A-n+2 (49) 

n 
61 4 y’=z 5 C 

4 -- - 
n(n-i) (n+l)(ntZ) 

t4 (50) 

Here the anomalous dimensions are positive for n > 2. The case n=2 of 

stress-energy tensor is also an exception, until the effects of chiral 

symmetry breaking are taken into account. 
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Finally for the scalar trajectory 

(52) 

(53) 

In this case the scalar (n=O) and vector (n=l) mesons are exceptional. 

The trajectories with anomalous parity, which correspond to y5 matrix 

between $ and + or dual field strength l? 
PV’ 

behave on a similar fashion. 

The anomalous dimensions always appear to be positive for sufficiently 

large n due to the term 

c 
n $*Pnn 

J 
(54) 

j=Z 

which arise because of the term B in covariant derivatives. 
I* 

Apparently, the theory meets our expectations. A priori it was not 

clear, that the coefficients bi would appear to be positive even for heavy 

mesons. 

IV. 02AND a3 TERMS 

Let us now find two more terms of a-expansion. For that we need 

the coefficients ci and di, i.e., the terms *g4 and gb in the masses. In 

principle, we may use the general equations of Ref. 4, but for readers 

convenience we rederive here these equations in a simpler form. Since 
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we are not interested in terms of g8 and higher, we may construct the 

ordinary, rather then the matrix Pade approximant to the 2 point functions. 

(As it was shown in Ref. 4, for the conformal tensors Oi(x) the nondiagonal 

matrix elements display themselves only starting from g8* ) 

Let us consider the Z-point function of the conformal tensor 0’ 
{a} tx’ 

in the momentum space and let us project out the states with definite spin 

L in the center of mass frame k cI = (VT, 0, 0, 0). 

The corresponding partial amplitude will be denoted as d(t) and its 

spectral function as p(t), skipping the labels L, i. We shall expand d(t) 

in Taylor series near t= - A2 where A’>> p2, and then we convert the 

Taylor series into the diagonal Pade approximant 

P#) 2 2N+1 - = d(t) + O(t + A ) 
QN(t’ 

. 

The Pade equations for polynomials PN, QN 

( ) $-’ (QNd - PN)t,-A2 = 0, 1 = 0, . ~. 2N 

can be written by means of dispersion relations as follows 

2N+1 

PN(t) = QNW(t' - 
m dsQNb)ds) 

0 lT(s -t) 

m dtQN(t’p(t’ 
= 0, r = 0, . . . N-l . 

0 (t+*2)2N+i -r 

(55) 

(56) 

(57) 

(58) 

The problem is reduced to the solution of integral equation (58) for the 

denominator QN. Its roots determine the spectrum at given N. As 
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we shall see below, the quantity 

R = N/A (591 

would play the role of the infrared cutoff. We are going to find a 

perturbation expansion for QN 

(1) 2 QN=Qi+QN agR +QN (2)(agi)2 + ~. . 

given the perturbation expansion for p 

P=PO+P 
wag2 

R 
+ p(2) 

(agi)2 + . . . 

By means of the Callan-Symanzik equation 

a 
-Rgg+P 

a 
2 + 2y p = 0 

agR 1 

we may represent p as follows 

y+.Q a 

p=t A-‘(tR2) 2 a& 0 tag;) 

(60) 

(61) 

(62) 

(63) 

Here A is the normal dimension of the field Oi(x), Y(agi) is the anomalous 

dimension. The function o(agi) coincides with the spectral density p at 

tx R-2 and starts from the constant o(O) at gi+ 0. (There are special 

cases of conserved conformal tensors with A = n+2, where for L=nc(O) = 0, 

but we do not consider those for the time being.) 

It would be convenient to use the “interaction representation ” 
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exp(x(y + + pa) ) = exp(yx) t exp(2 f? x 
s dy (ay’y + a) ) = 

0 

q exp(yx) i+$,*%+ 2 ;,a +o(p2) . (64) 

Since p- gi, up to gi we may write instead of (64), (63) 

p = const t”(1 + 
. 

F 1 n2(tR2) + O(gi) ) (65) 

v =A-2+y+apo’/2o ~ (66) 

The common constant factor in (65) drops out on the homogeneous 

equation (58). 

In order to find the perturbation theory for Q it is convenient to use 

the Green’s function: which satisfies the equation (in our notations) 

m ds s”G(s,t) = tV 

0 (s+A2)2N+i -r (t+A2)2N+1-r 

r=O,...N-1 ~ 

The explicit expression for G reads 

c 
G(s,t) = 

with 

f(w) = 
F(2N+1-w)F(-w) 

I-(N+f-v-w)r(N+-i-w) 
’ (N2)‘-” . 

(67) 

(68) 

(69) 

The normalization of f(w) is the matter of convenience. The contour C 

encloses the poles of f(w)..which are located at w =O, . . . N, while the 
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contour C ’ encloses the zeros of f(w ‘) which are located at 

w’ = N + l-v, N + 2 - v, . . . . m j 

Note, that G(s, t) is the Nth degree polynomial in s with t-dependent 

coefficients. 

If we replace the factor 

t” 
(t+A2)2N+1 -r 

which arises in (58), by the 1. h. s. of (67), we arrive to the equation 

m ds s”(s+A 
2r 

) 

o (s+A2)2N+1 
RN(s) = 0 

r =O, . . . N-l (70) 

with 

RN(s) = o ;2 Q#) (1 + y Pn2(tR2) )G(s, t) (71) 

by construction being the Nth degree polynomial in s. As it follows from 

(70), this polynomial is orthogonal to all powers of s up to s 
N-l 

, with 

the weight 

KS) = s”(s + A 2 -@N+l) ) 

In other words RN is the Nth degree orthogonal polynomial with respect 

to this weight. Up to arbitrary normalization the orthogonal polynomial 

is given by 
r- 

RN(s) = g- f(w) (1 + s/n2)0 ~ (72) 
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One may verify, that after integration Over s in (70), (72), the arising 

function of w does not have singularities outside the contour C, so that 

(72) is indeed a solution of (70). 

Now let us expand Q in tR2 

“N = z. a(N) (tR2? (73) 

then substitute this expression in (71) and compare the coefficients at 

(sR 1 2 m in (71) and (72). 

In (71) we find 
N 

c 
qnW)F (N) 

n=O 

with 

F -(N) = (N2)n-m dcd&’ 1 fb 1 --. 

(2d 
2 w’w f(w’) 

- (:)(I+ y -$)B(n+I,ti* -n) , 

B(x, y) being the B-function. This should be equal to 

j gi fid(I) W2,-m 
C 

(74) 

(75) 

(76) 

according to (72). 

Now we may tend N to a0 (so far, at fixed R). In this limit the region 

of 

62% Cd’QN 2 
(77) 
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proves to be essential in the integrals and we may use the asymptotic form 

v-l 
exp(-N2/w ) 

w 

i i 

m 
-+w 

m m! (79) 

B(n+l, o’ -n) + I-(n+l)(w ‘) -n-l 
. (8’3) 

All the integrals can now be calculated and we find 

in (76) and 

F -(“) = (-Urn 
m! l?(v+m) (82) 

in (75). In the last relation the term 1 in the brackets contributes only 

at n=m, otherwise F(-n)(m-n) is infinite. Hence we may write 

FtUll (m)=6 +q* (-ijm a2 r(n+v) 
nm m! I?( v+m) an 2 (m-n)P(-n) (83) 

and we arrive to the following equation for coefficients q,(u) E qn 

OD 

c 
n=O 

(-Urn 
= m!l?(v+m+i) + ok;) * (84) 

UP to g; we find 
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%I = m! :(ZCl+,) [1 -F Zrn(4 ] (85) 

with m 
a2 zzm(v)E - (-l)“(m+v) r(n+v+e) 

ac2 c n=O n!F(v+n+l)(m-n-e)l?(-n-e) * (86) 

This sum can be represented as the contour integral 

a2 
Cm(v) = (m+v) - 

ac2 

+im 
dz rc-2)r(2+ V+E) 

-im 2rri r(z+ v+l)r(-z-c)m-z -E) . (87) 

E=O 

Calculating the residues in the left semiplane we find after some elementary 

transformations 

Xm(v, = A(v) + 2 ; - k+;+, . (88) 

Here #z) = I ‘(2)/F(z), and 

a2 
A(v) = - 

ae2 
I?( Y+E) 

r(qyi - E) 

is irrelevant constant, which leads to renormalization of q m in (85). 

The corresponding equation for the mass spectrum 

m (-M2R2jm . 
c m! r(m+v+l) 

m=O 

is solved iteratively and up to g* we find 

MR = zs(v) 1 + aPy’V,(V) 

(89) 

(90) 

(91) 
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with co m 

c ms(v)Zm(4/8 1 mCms(v) 
m=i 

c ms(4 = 
(-z;(v) jrn 

m!F(m+v+i) 

zs(v) being the root of Bessel function Jv(2z). Apparently 

co 

c 
C ms(4 = 0 

m=O 

(92) 

(93) 

(94) 

so that the constant terms in Zm(v) do not contribute. For integer Y, 

Zm(v) can be reduced to the following 

v 

Z,(v) = const + 2 c 
Jl(e+ 

p=1 4+m 

+ +2(m+ v+l) + +2(m+l) - +‘(m+v+i) -$‘(m+i) . (95) 

The proof of this relation is left to the reader as an entertainment for a 

rainy evening. Note that both + and +’ are elementary for integer 

argument: 

4 

4 = (4 +I) = -cE + c l/k (96) 
k=l 

4 

c 
l/k2 . 

Ic=l 

Suppose, that we know the 3-100~ coefficient C in p-function and the 

2- and 3-100~s terms in the anomalous dimensions 

y(ag’) = y ‘ag’ I 22 1 
+Fy”(ag ) +~y***(ag~)~ + o& (98) 
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and in the spectral 2-point functions 

0 (ag’) = 0 + .*ag2 + i d’(ag2)2 + O(g6) . 

Then we may find the coefficients ci and di. After simple trans- 

formations we arrive to the following expressions: 

(99) 

c. Y” 0’ “- -1 1 
b. 2v; 

-1 +-y: (In 2)” _ V 

1 29.; 2 I (In 2)’ (In z)’ 

+ 

0: 
1 1 ,2 (Pn z)“’ -- 

oi +6Yi (4n 2)’ - 

- “, (,b+$j- c4nvz;. y; Vn z) 

(100) 

(101) 

with z Z zs(A-2), z’_ z’;(A-2), V Z Vs(A-2), etc. Thus, the LY’ and a3 

terms are given by (25), (19), (6), (100) and (101). 

The Bessel coefficients 

Ls(A) : Pn z 

MS(A) E 2 d(m 

OS(A) Z V/(4n z)’ 

(102) 

(103) 

(104) 

(105) 

are given in the Table, for the interval of s, A, such that 
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1.9~~~6 . (106) 

Thus, the problem is reduced to calculation of 2- and 3-100~ integrals 

of the ordinary perturbation theory. Though these integrals are pure 

numbers in our case, the calculation is rather tedious and will not be 

done here. However, the a2 terms for the ratios of the radial excitations 

(s = 2,3, . *. ) to the basic mass do not involve the Z-loop integrals. In 

this case 

Mis 
4n 7q 

= 6Ls+aqbM + 
S 

MS(A) 
m++Y;6N -60 + O(c3) (107) 

1 S 

where 6 Ls! Ls(A) - Li(A), etc. 

For the family of vector meson the numbers are as follows: 

for A=4 (spin 2) 1 

M2 -= 
M1 

1.53 - 0. 23 LY - 0. 37 (u2 + O(a3) (109) 

for A=5 (spin 3) , 

M2 -= 
lvIl 

1.46 - 0.19 (Y - 0.31 a2 + O(ct3) (110) 

for A=6 (spin 4) . 

As one may see, the coefficients are rather small, but so far, do not 

decrease so that the a3 terms might be important. 
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V. SUMMARY AND DISCUSSION 

Let us resume the results obtained. We represented the ratios of 

masses of mesons in multicolor QCD as the boundary values at a=i of 

certain functions with the calculable Taylor coefficients. The first three 

coefficients were calculated explicitly. Apparently two more coefficients 

are required. These coefficients involve the Feynman integrals with 3 and 

4 loops, which may be calculated by means of computers. 

Also, the effects of the chiral symmetry breaking should be taken 

into account. The preliminary analysis by Yu. Makeenko and the author 

indicates that these effects can be fitted within the framework of a- 

expansion, though the coefficients will change. Thus, the above formulas 

for the coefficients are subject to corrections, coming from the chiral 

symmetry breaking. Presumably these corrections will be small for 

heavy mesons, and will improve the a-expansion for the light mesons. 

One may estimate the corrections as 

<J1W 

M62 

where <+$I> is the vacuum average, violating the chiral symmetry, and 

M is the mass of the corresponding meson. 

The other important problem is how to compute the l/Nc corrections. 

The method is clear in principle -- one should iterate the unitarity 

conditions in l/N 
C’ 

starting from the “Born term” found above. However, 

to do that one should first find the Pade-regularization for the many-point 

functions, which meets the technical difficulties. 
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After this problem would be solved, one should think about the 

exponential corrections * exp(-Nc) due to the instantons and the other 

possible extrema of the classical action. The related problem is the 

problem of baryons, which are composed from Nc quarks and thus have 

the infinite masses in the limit NC = m. 

Thus, the way proposed is not an easy one, but there seems to 

be a light at the end of the tunnel. 

I wish to thank my colleagues from Landau Institute for interesting 

discussions and H. D. I. Abarbanel of Fermi National Accelerator Laboratory 

for careful reading of the manuscript and making some useful comments. 

I am also grateful to the Aspen Center for Physics, where this paper 

was completed. 
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TABLE 

A s L M N 0 

1 1.343310 1.186201 -0.217058 0.992370 

3 2 1.948134 0.906111 -0.133893 1.487123 

3 2.319783 0.762349 -0.096919 1.806861 

1 1.636201 0.994074 -0.145955 1.367648 

4 2 2.130282 0.806521 -0.101979 1.752972 

3 2.452714 0.698700 -0.078759 2.016917 

1 I.853193 0.875952 -0.110426 1.630258 

5 2 2.278397 0.735916 -0.082651 1.953043 

1 2.026613 0.793436 -0.089024 1.833420 

6 2 2.403761 0.682224 -0.069636 2.114700 

7 1 2.171506 0.731392 -0.074680 1.999564 

8 1 2.296175 0.682444 -0.064379 2.140340 

9 1 2.405716 0.642491 -0.056614 2.262600 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2 

Fig. 3 

Logarithm of the generalized mass versus 5 = PnpR, 

R being the I. R. cutoff. When cy varies from 0 to 1, 

the curve rotates around 5 = 0. 

The relation between the position co of the minimum of 

the mass and cy . Varying (Y from 0 to 1 is equivalent 

to varying E. from -m to +m. 

The relation between the minimal value 4 of the log of 

mass and cy . $(a) starts from f(0) and ends up with 

the true value of 1n(M/p). The expansion of $ around 

(Y = 0 is derived in a text. 
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